
www.manaraa.com

A Data Management Layer
for Visual Information Retrieval

Horst Eidenberger and Roman Divotkey
Vienna University of Technology

Institute of Software Technology and Interactive Systems
Favoritenstrasse 9-11, A-1040 Vienna, Austria

+43-1-58801-18853

{eidenberger, divotkey}@ims.tuwien.ac.at

ABSTRACT
This case study describes the data management layer of the
VizIR visual information retrieval project. VizIR is an open
source framework of software tools for visual retrieval research.
In content-based multimedia retrieval media objects are
described by high-dimensional feature vectors. These feature
vectors have to be stored in an efficient way in order to
accelerate the retrieval process. VizIR database management is
based on object-oriented persistence management. The database

interface has a three tier architecture: a pattern-based persistence
system hides the underlying database, an object-relational
mapping system maps classes to entities and a relational
database provides state-of-the-art database features
(transactions, integrity, recovery, etc.). The described database
management prototype can be downloaded from the VizIR
project website.

Categories and Subject Descriptors
H.2.4 [Database Management] Systems – Multimedia
databases, object-oriented databases, relational databases.
H.2.8 [Database Management] Database Applications – Data
mining, image databases.

General Terms
Management, Performance, Design, Reliability,
Experimentation.

Keywords
Content-based Visual Information Retrieval, Video Retrieval,
Image Retrieval, Object-oriented Database Design, Database
Management, Persistence Management, High-dimensional
Indexing, Multimedia Databases.

1. INTRODUCTION
Content-based visual information retrieval (VIR) is a field of
multimedia research that aims at extracting meaningful
(semantic) media information directly from the pixel level.
Sophisticated algorithms (e.g. the MPEG-7 visual features [2,
7]) are used to locate relevant information (features, descriptors)
in media objects. Usually, features are represented as high-
dimensional data vectors. For example, if all visual MPEG-7
features are used to describe a media object, the data vector has
more than 320 dimensions. Dis-similarity of media objects is
measured as distance between feature vectors. See [3, 6, 8] for
more information on content-based visual information retrieval.

The fundamental database problem of VIR is to establish the
efficient storage of feature vectors in order to enable fast (but
still flexible) content-based multimedia data mining. This case
study describes the approach we implemented to solve this
problem in the VizIR project [4]. VizIR aims at developing a
software workbench of free tools for content-based image and
video retrieval (see Section 2 for more information on VizIR).
Below, we discuss general approaches for VIR database design,
describe and argue for our design decision and give details on
the concrete implementation in the VizIR framework (freely
available from [10]).

The paper is organised as follows. Section 2 sketches the VizIR
project. Section 3 points out principal data models for feature
data. Section 4 describes the VizIR data management model.
Finally, Section 5 describes selected implementation issues.

2. BACKGROUND: THE VIZIR
PROJECT

Even though significant amounts of research on VIR have been
conducted in recent years and a considerable number of research
prototypes has been developed (see [8] for a quick overview),
there is still no VIR software framework available that would
satisfy the researchers' needs. Firstly, as similar methods are
used for image and video retrieval, it would be desirable to
support both media types in one environment. Furthermore, it
would accelerate research work, if state-of-the-art VIR
components (e.g. space to frequency transformations, kernel-
based learning algorithms, user interfaces) would be readily
available in an homogeneous environment.

With the VizIR project we are intending to satisfy these
demands. VizIR is a framework of resources (mainly software

The copyright of these papers belongs to the paper's authors.
Permission to make digital or hard copies off all part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

MDM/KDD'04, August 22, 2004, Seattle, WA, USA.

www.manaraa.com

components implemented in Java) that are needed to build VIR
prototypes. The software components include classes for media
access, transportation and visualisation in user interfaces, for
feature extraction (including the content-based MPEG-7
descriptors), for querying and refinement based on a novel 3D
retrieval and browsing panel, for user interface design, and for
visualisation of media metadata, evaluation and benchmarking.
As the framework itself and all elements have to be extendible,
it is imperative that the underlying database system does not
make any assumptions on the elements' structure in order to
keep them persistent. This constraint drives the database design
considerations presented in Section 4.

VizIR is an open project and all components are free under
GNU General Public License. See [4] for a more detailed
description on the VizIR project. All finished components
(including the database layer presented in this paper) can be
downloaded as source code from the project website [10].

3. RELATED WORK: DATABASE
MANAGEMENT FOR FEATURE
DATA

One scientific challenge of VIR is the high dimensionality of
feature vectors. For example, if all content-based MPEG-7
descriptors are used to describe an image, the description has
more than 300 dimensions. Solving the dimensionality problem
adequately must be one of the first issues in designing a VIR
system. Still, it is mandatory for the success of VIR in general
and the VizIR project in particular that the database layer meets
a number of software engineering requirements: Database
access has to be simple, efficient, domain-independent and
operating system-independent. Additionally, the database
management system has to provide traditional features
(integrity, recovery, etc.). Before we designed the VizIR
database layer we surveyed approaches that were used in
existing VIR systems or suggested for the future.

Classic RDBMS (e.g. DB2 in QBIC [8]) fulfil all software
engineering requirements easily. If used, media objects are
usually stored externally, feature vectors are stored as BLOBs
(often in one table per feature) and indexed by context-free

structures (e.g. B-trees). Therefore, the data can only be accessed
sequentially (by ID). More sophisticated access methods (such as

dis-similarity measurement by distance functions; for example,
implemented as stored procedures) cannot be used. Fine-
granular access would only be possible, if feature vector
elements could be assigned to table attributes. This is usually

impossible as many features have varying length.

In recent years, sophisticated indexing structures have been
developed for multimedia RDBMS (see [1] for an overview).
Various R-trees, SS-trees, etc. have been proposed to allow for
efficient organisation and access to high-dimensional media
data. Ideally, raw media data would be stored outside the
database. Feature metadata should be stored in fine granulation
in the database to enable context-specific indexing. If
multimedia indexing structures do exist, feature data can be
selected using distance functions. Unfortunately, a number of
drawbacks are connected to this approach. Firstly, most
indexing structures have the tendency to become inefficient for
really high-dimensional data (in the MPEG-7 case: 320+
dimensions). Secondly, most indexing structures are unable to
deal with multiple distance measures in one index (state-of-the-

art in content-based retrieval). Thirdly, as for classic RDBMS it
is mostly impossible to define a mapping from feature vector
elements to entity attributes. Finally, multimedia indexing
structures are hardly implemented in classic RDBMS and more
specialised products are often not operating system-independent
or do not provide traditional RDBMS features.

As it is very difficult to press polymorphic feature data in

relational databases in fine-granular manner, we searched for
alternative approaches of data representation. XML databases
seem to provide ideal structures and properties for VIR data.
Features can easily be mapped to XML documents (e.g. MPEG-
7 defines an XML representation of its visual features). Media
objects are per se separated from metadata and stored externally.
All data points can easily be accessed by using document
models and (simple) querying languages (e.g. W3C DOM and
XPath).

One VIR-specific example for this group of systems is the
PTDOM database [11]. PTDOM defines a document object
model specific for the MPEG-7 features. All features (including
those based on MPEG-7 types: vector, matrix) can be accessed
on a fine-granular level and retrieved using XPath and database-
internal user-defined functions (similar to stored procedures).
Data elements can be indexed by B-trees. Of course,
additionally, more sophisticated multimedia indexing structures
could be implemented as well. The main drawback of PTDOM,
in terms of practical application, is that the currently available
implementation is strongly bound to commercial, operating
system-dependent helper libraries.

The last VIR-specific approach that may become relevant in the
future is the media mediator concept [9]. Media mediators are
functions that are used to access media data live during a query.
Conceptually, media mediators are defined on a semantic level
and mapped to low-level features that extract information from
the media samples. Theoretically, media mediators can be used
to define arbitrary operations on media data but, as well, to
implement distributed querying environments. The advantages
of the media mediator concept are that everything is done on the
fly and media objects are accessed in a fine-granular way. On
the other hand, obviously, the comprehensive operations needed
to implement mediators would be extremely resource-
consuming. Additionally, it would be almost impossible to
accelerate the querying process using indexing structures. These
drawbacks make it unlikely that the media mediator concept can
ever be implemented in its original form. Still, if particular
operations could be identified as basic building blocks for media
mediators, these operations could be computed prior to query
execution. Hereby, the querying process could be dramatically
accelerated while the flexibility of the concept would be largely
preserved.

4. VIZIR DATA MANAGEMENT
MODEL

Below, we describe the data management model we designed
for the VizIR project from the described palette of approaches.
Subsection 4.1 describes the design decision. Subsequent
subsections describe all relevant aspects of the VizIR data
management model.

4.1 Use case-driven design decision
Surveying principal VIR approaches showed that we could

www.manaraa.com

basically choose between a classic RDMBS (with self-
implemented multimedia indexing structures) and an XML
database. As VizIR is a software engineering project, we
decided to follow a best practice and perform the database
decision use case-driven.

VizIR is intended for general purpose VIR. For practical
applicability it should provide reliable state-of-the-art
persistence management. These requirements are best satisfied by
classic RDBMS. An XML database would be a good choice,
because the (implemented) visual MPEG-7 features are
available as XML documents. Additionally, most feature
structures can easily be represented in XML form. On the other
hand, even professional XML databases have serious problems
with handling large XML documents. Generally, implementing
multimedia indexing structures would hardly make sense, since
most features require variable distance measures. In this
situation, an index would have to be defined for every distance
measure used in the retrieval process. Obviously, following this
approach would result in significant overload of indexing
metadata. Furthermore, some distance measures used in VIR are
not based on metrics and, in particular, do not meet the triangle
inequality requirement. For these measures it would be even
more difficult to define an index. Moreover, feature structures
can be organised arbitrarily (e.g. as matrices). Additionally, in
many retrieval situations, the query engine has to browse
through the feature vectors sequentially anyway.

Therefore, we decided that VizIR should be grounded on a
relational database and indexing structures should be
implemented (if required) on the application level. Since VizIR
is based on the query-by-example paradigm, low-level indexing
in relation to a pre-defined origin (e.g. the zero vector of
distance space) would not be feasible. An index would be
required for every query example. However, variable indexing
concepts on the application level (e.g. heuristics) may result in
valuable query acceleration.

In order to guarantee application independence and framework
extendibility we decided to employ object-oriented persistence
management and to map serialised software objects to tables of a
relational database. Figure 1 depicts the resulting three layer
structure: The persistence system layer provides the methods
needed to access the database (storage and retrieval), the
mapping layer maps objects to entities and the database layer
provides transactions, integrity and recovery. The advantages of
this solution are that (1) any mapping tool and any database can

be used behind the persistence system API, (2) any serialisable
object can easily be made persistent and (3) database
management is fully transparent to the rest of the VizIR
framework.

4.2 VizIR entities
Generally, the VizIR persistence management system needs to
store media-related and descriptor-related data. For media
objects, just the visual data and some textual metadata are
stored. The structure needed for descriptor-related data is shown
in Figure 2 (in UML syntax). It is required both on the database
level (as entities) and on the application level (as classes).

The main class is DescriptorInfo. This class holds the
management methods for the other components.
DescriptorLogic contains the extraction algorithms.
DescriptorLogic may have an arbitrary structure: as it is
stateless, it is not made persistent. The actual (XML) descriptor
data are held in Descriptor. Since descriptors may have widely
varying appearances, each Descriptor is encapsulated by a
DescriptorContainer. As this class has a pre-defined, fixed
structure, it can easily be made persistent (see Section 5).
Additionally, every Descriptor may belong to a group (e.g. an
MPEG-7 descriptor scheme). This relationship is implemented
in DescriptorInfo and DescriptorInfoCollection.

Even though we did not have this generality in mind when we
designed the VizIR persistence manager, the presented model is
flexible enough to hold any type of feature data for any type of
media. It could, for example, be employed to manage content-
based features of audio streams or text features of arbitrary
media objects.

4.3 Persistence management layer
The persistence management layer is responsible for offering all
database-relevant methods to the VizIR framework while hiding
the concrete implementation of the object-relational mapping
and the database. Figure 3 illustrates the implemented model.
The chosen design follows state-of-the-art software design
patterns.

The main class PersistenceSystem is responsible for initialisation
and the creation of all database-related entities (media objects
and descriptors). Additionally, it contains a factory class for the
creation of PersistenceManager classes (PersistenceFactory).
PersistenceManager encapsulates all methods needed for
database access and transaction management. This class is used

...

Persistence system

Object/relational mapping

Serializeable
VizIR classes

...

RDBMS
Database

1

2

3

Figure 1. Layer structure of VizIR persistence system.

Descriptor DescriptorContainer

DescriptorLogic DescriptorInfo

DescriptorInfoCollection

generates

accessible via
classname

contains

0..*

0..*

1..*

Figure 2. Descriptor-related entities (simplified).

www.manaraa.com

to put VizIR objects under persistence control, reload objects
from earlier instances and retrieve collections of objects by
name. Currently, the persistence manager supports only direct
queries by ID (e.g. descriptor class name). Joins can be used to
retrieve, for example, all feature vectors for one media object or
all media objects of a particular media collection. Generally, the
level of sophistication of the querying components depends on
the object-relational mapping tool.

In order to guarantee the exchangeability of the underlying
mapping system, the persistence management classes implement
the Bridge pattern: PersistenceFactory and PersistenceManager
are just interfaces that define an API. The classes implementing

these interfaces are dependent on the mapping layer. The
factories PersistenceSystem and PersistenceFactory are
responsible for instantiating the right implementing classes for a
particular configuration of mapping layer and database.

5. IMPLEMENTATION
The Java implementation of the VizIR persistence management
system makes use of the Hibernate system on the mapping layer
[5]. Hibernate was selected, because it supports a wide range of
commercial and open source database systems (including
Oracle, DB2 and MySQL), provides powerful querying
mechanisms and employs the Java Reflection API to analyse the
structure of software classes. Furthermore, it is, like VizIR, an
open source project that is published under GNU LGPL.

Classes that are made persistent using Hibernate have to meet a

few requirements: A default constructor (without parameters, e.g.
newInstance()) has to exist for each class and accessor methods
(get/set) have to be available for every resource. These methods
are used through the Reflection API. Optionally, every class
should have an ID tag. Only two bits of information have to be
provided externally: the mapping of resources to database data
types and the primary/foreign key references in 1:n and n:m
relationships. This information is provided in simple XML
documents. Even though it is possible to inform Hibernate about
relationships of entities, the system leaves maintenance of
referential integrity (at least of n:m relationships) to the user.
Integrity can be achieved by implementing the Lifecycle
interface and callback methods for data manipulation events
(e.g. onDelete()).

We are making use of the properties of the Hibernate system to
store arbitrarily shaped feature data in the database without the
need to define mappings for every new Descriptor class: The

mapping is defined for the resources of DescriptorContainer.
Feature vectors (Descriptor objects) are properties of this class.

6. CONCLUSIONS AND FUTURE WORK
We tried to identify the most practicable database solution for a
content-based visual information retrieval system that does neither
make assumptions on features used nor on application domains.
The VizIR framework is intended to be a modern, usable
workbench for visual information retrieval research. Hence,
grounding the system on a flexible and robust database layer was
mandatory. It is interesting to notice that the best solution turned
out to be a classic relational database in combination with an
object-oriented persistence manager. Using the described design,
VizIR can deal with arbitrary feature data and database systems.
The programming effort for the VizIR user is reduced to a
minimum. Actually, the VizIR persistence layer can be used to
manage media objects and metadata (text or binary) of any kind. It
is free software and can be downloaded from [10].

Future work will include performance tests with large MPEG-7
test datasets as well as architecture tests with mapping tools and
database systems not considered so far.

7. ACKNOWLEDGMENTS
The authors would like to thank Christian Breiteneder for his
valuable comments and suggestions for improvement. The
VizIR project is supported by the Austrian Scientific Research
Fund (FWF) under grant no. P16111-N05.

8. REFERENCES
[1] Böhm, C., Berchtold, S., and Keim D.A. Searching in High-

Dimensional Spaces-Index Structures for Improving the
Performance of Multimedia Databases. ACM Computing
Surveys 33, 3 (2001), 322-373.

[2] Chang, S.F., Sikora, T., and Puri A. Overview of the
MPEG-7 Standard. IEEE Transactions on Circuits and
Systems for Video Technology 11, 6 (2001), 688-695.

[3] Del Bimbo, A. Visual information retrieval. Morgan
Kaufmann, San Francisco CA, 1999.

[4] Eidenberger, H., and Breiteneder, C. VizIR – A Framework
for Visual Information Retrieval. Journal of Visual
Languages and Computing 14, 5 (2003), 443-469.

[5] Hibernate project website. http://www.hibernate.org/.

[6] Lew, M.S. (ed.) Principles of Visual Information Retrieval.
Springer, Heidelberg, Germany, 2002.

[7] Manjunath, B.S., Salembier, P., Sikora T. Introduction to
MPEG-7. Wiley, San Francisco CA, 2002.

[8] Marques, O., and Furht, B. Content-Based Image and
Video Retrieval. Kluwer, Boston MA, 2002.

[9] Santini, S., and Gupta, A. Mediating Imaging Data in a
Distributed System. in Proceedings of SPIE Electronic
Imaging Symposium, Storage and Retrieval Methods and
Applications for Multimedia (San Jose CA, January 2004),
SPIE, 365-376.

[10] VizIR project website. http://vizir.ims.tuwien.ac.at/.

[11] Westermann, G.U., and Klas, W. A Typed DOM for the
Management of MPEG-7 Media Descriptions. Multimedia
Tools and Applications, to appear.

PersistenceSystem

PersistenceFactory PersistenceManager

PersistenceFactoryImpl PersistenceManagerImpl

creates

Figure 3. Persistence management classes.

